Reglas Trigonométricas
Reglas Trigonométricas
Funciones Trigonométricas
Concepto de función trigonométrica
Una función trigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirse funciones circulares inversas: arco seno, arco coseno, etcétera.
La función seno
Se denomina función seno, y se denota por f (x) 5 sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.
Gráfica de la función seno.
La función cosecante puede calcularse como la inversa de la función seno expresada en radianes.
La función coseno
La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.
Gráfica de la función coseno.
La función secante se determina como la inversa de la función coseno para un ángulo dado expresado en radianes.
La función tangente
Se define función tangente de una variable numérica real a la que resulta de aplicar la razón trigonométrica tangente a los distintos valores de dicha variable. Esta función se expresa genéricamente como f (x) = tg x, siendo x la variable independiente expresada en radianes.
Gráfica de la función tangente.
La función cotangente es la inversa de la tangente, para cualquier ángulo indicado en radianes.
Propiedades de las funciones trigonométricas
Como características importantes y distintivas de las funciones trigonométricas pueden resaltarse las siguientes:
- Las funciones seno, coseno y tangente son de naturaleza periódica, de manera que el periodo de las funciones seno y coseno es 2p y el de la función tangente es p.
- Las funciones seno y coseno están definidas para todo el conjunto de los números reales. Ambas son funciones continuas (no así la función tangente).
- Las funciones seno y coseno están acotadas, ya que sus valores están contenidos en el intervalo [-1,1]. La función tangente no está acotada.
- Las funciones seno y tangente son simétricas respecto al origen, ya que sen (-x) = -sen x; tg (-x)=-tg x. En cambio, la función coseno es simétrica respecto al eje Y: cos (-x) = cos x.
Particulares, O. (s/f). Reglas de derivación. Uam.mx. Recuperado el 29 de junio de 2024, de http://canek.uam.mx/calculo1/teoria/reglas/ftbasicas.pdf
Comentarios
Publicar un comentario